9a,11-CYCLIC CARBAMATES OF 15-MEMBERED AZALIDES

GABRIJELA KOBREHEL*, GORJANA LAZAREVSKI, ŽELJKO KELNERIĆ AND SLOBODAN ĐOKIĆ

PLIVA, Research Institute, 41000 Zagreb, Prilaz baruna Filipovića 89, Croatia

(Received for publication January 12, 1993)

The novel 9a,11-cyclic carbamates (13 ~ 15) of 9-deoxo-9a-aza-9a-homoerythromycin A (4) have been prepared and characterized by ${}^{1}H{}^{-1}H$ and ${}^{1}H{}^{-13}C$ 2D NMR spectroscopy. When compared to azithromycin (1) or its 6-*O*-methyl derivative (2), the new bicyclic 15-membered azalides exhibited substantially decreased antibacterial activities *in vitro*.

Azithromycin (1) is a new macrolide antibacterial which belongs to a recently described subclass of antibiotics known as azalides.^{1,2)} In preceding paper³⁾ we reported the synthesis and structure-activity relationship of novel O-methylazithromycin derivatives. Among them, 6-O-methylazithromycin (2) and 11-O-methylazithromycin (3) exhibited excellent *in vitro* antibacterial activities against a variety of standard strains. In the development of synthetic routes for 2, O-methylation of 9-deoxo-9a-aza-9a-homoerythromycin A (4),^{4,5)} the 15-membered-ring macrolide with the secondary 9a-amino group, has been investigated. Herein, we describe the synthesis and structure-activity evaluation of a novel series of compounds based on the 9a,11-cyclic carbamate structure of 4.

Gradual addition (2 hours) of benzyl chloroformate (Cbz-Cl) to a solution of 4 in benzene in the presence of NaHCO₃ afforded trisprotected benzyloxycarbonyl derivative (5) in 70.1% yield.⁶⁾ When this sequence was accomplished by the addition of Cbz-Cl in one portion, a significant amount of a less polar bisprotected compound (6) was isolated (36.3%). The disappearance of the IR 9a-NH stretching frequency at 1650 cm^{-1} in the spectra of 5 and 6 and the observation of the new resonances in their ¹³C NMR spectra at $\delta 157.4$ and 157.8, respectively, were consistent with the introduction of one of the

1 $R_1 = R_3 = R_5 = R_6 = H, R_2 = R_4 = CH_3$

- **2** $R_1 = R_5 = R_6 = H, R_2 = R_3 = R_4 = CH_3$
- 3 $R_1 = R_3 = R_6 = H, R_2 = R_4 = R_5 = CH_3$
- 4 $R_1 = R_3 = R_4 = R_5 = R_6 = H, R_2 = CH_3$
- 5 $R_1 = R_2 = R_4 = CO_2CH_2C_6H_5, R_3 = R_5 = R_6 = H$
- 6 $R_1 = R_4 = CO_2CH_2C_6H_5$, $R_2 = CH_3$, $R_3 = R_5 = R_6 = H_6$

СН₃ H₃C ,CH₃ OR3 HO 'C R₁C CH₃ H₃C сн а CH₂ CH₃ СН₃ . CH₃ OR4 OCH 3 Н₃С $R_1 = R_2 = CO_2CH_2C_6H_5, R_3 = R_4 = CH_3$ 7 8 $R_1 = R_2 = CO_2CH_2C_6H_5$, $R_3 = CH_3$, $R_4 = H$ 9 $R_1 = R_2 = CO_2CH_2C_6H_5, R_3 = R_4 = H$ 10 $R_1 = R_2 = H, R_3 = R_4 = CH_3$ 11 $R_1 = R_2 = R_4 = H, R_3 = CH_3$ 12 $R_1 = R_2 = R_3 = R_4 = H$ $R_1 = H, R_2 = R_3 = R_4 = CH_3$ 13 $R_1 = R_4 = H, R_2 = R_3 = CH_3$ 14 15 $R_1 = R_3 = R_4 = H, R_2 = CH_3$

benzyloxycarbonyl groups at 9a-position.⁷⁾ In addition, the ¹H NMR downfield chemical shifts of 3'-NCH₃ (δ 2.29 \rightarrow 2.76, 2.82) and 2'-H (δ 3.22 \rightarrow 3.48) in **5** as compared to those of **4**, together with the corresponding ¹³C upfield shifts of 3'-NCH₃ (δ 40.3 \rightarrow 34.9) and C-1' (δ 103.1 \rightarrow 100.1), clearly indicated that the other protecting groups were located at 2'-OH and 3'-NCH₃ positions. Since the ¹H and ¹³C chemical shifts of 3'-N(CH₃)₂ and 2'-H in **6** were similar to those of **4**, this compound is suggested to be 2'-O,9a-N-bis(benzyloxycarbonyl)-derivative of **4**.

Based on the previously reported procedures^{3,8,9)} we expected that O-methylation, deprotection and subsequent reductive 3'-N-methylation of 5 would give O-methyl derivatives of 4. However, O-alkylation of 5 with methyl iodide and sodium hydride in DMSO - THF (1:1) at $0 \sim 5$ °C gave three products (7) ~ (9), two of which were identified after removal of the benzyloxycarbonyl protecting groups and N-methylation of the isolated 3'-N-demethyl derivatives (10) and (11), as O-methyl-9a,11-cyclic carbamates (13) and (14). Thus, O-methylation of 5 appeared to take a different course to that in 1, involving a preliminary

Proton	4	11	12	13	14	15
2	2.78	2.83	2.86	2.84	2.84	2.88
3	4.34	4.12	4.08	4.23	4.20	4.16
4	1.93	2.10	2.05	1.95	1.98	2.01
5	3.66	3.61	3.60	3.63	3.63	3.64
6-OCH ₃		3.45		3.45	3.46	_
7	1.75, 1.38	1.51, 1.35	1.61, 1.29	1.50, 1.35	ND	1.58, 1.3
8	1.74	2.30	2.23	2.13	2.26	2.28
9	3.06, 1.82	3.47, 2.44	3.46, 2.35	3.49, 2.39	3.47, 2.43	3.44, 2.43
9a-NH	ND	· `	_	_		_
10	2.58	3.51	3.56	3.66	3.65	3.66
11	3.46	4.32	4.28	4.33	4.32	4.32
13	4.73	5.48	5.08	5.45	5.46	5.06
14	~1.86, 1.50	1.73, 1.56	1.88, 1.45	1.73, 1.45	1.74, 1.53	1.86, ND
15	0.89	0.91	0.87	0.91	0.91	0.88
16	1.21	1.25	1.24	~1.24	1.25	1.23
17	1.06	1.02	1.02	1.9	1.08	1.08
18	1.30	1.37	1.39	1.36	1.36	1.38
19	0.94	1.00	0.98	1.00	1.00	0.98
20	1.15	1.22	1.22	1.26	1.26	1.25
21	1.08	1.14	1.18	1.14	1.14	1.17
1′	4.43	4.37	4.35	4.46	4.42	4.40
2'	3.22	3.21	3.20	3.19	3.23	3.24
3'	2.44	2.52	2.51	2.55	2.46	2.49
3'-N(CH ₃) ₂	2.29	_	_	2.28	2.30	2.32
3'-NCH ₃	_	2.43	2.42	_		
4′	1.66, 1.26	1.42, 1.16		1.67, 1.18	1.67, ND	1.69, 1.27
5'	~ 3.51	3.63	3.56	~3.65	3.50	3.50
5'-CH3	1.23	1.27	1.27	1.26	1.23	1.22
1″	5.09	4.90	4.89	4.88	4.91	4.91
2"	2.35, 1.58	2.32, 1.58	2.31, 1.56	2.37, 1.54	2.35, 1.62	2.30, 1.62
3"-CH ₃	1.25	1.25	1.24	1.27	1.24	1.24
3"-OCH ₃	3.34	3.29	3.28	3.31	3.31	3.30
4″	3.04	3.04	3.03	2.68	3.04	3.04
4"-OCH ₃	—	—		3.54		—
5″	4.08	4.16	4.10	4.22	4.04	4.04
5"-CH ₃	1.33	1.30	1.30	1.31	1.30	1.30

Table 1. ¹H NMR chemical shifts $(\delta_{\rm H})^{\rm a}$ for compounds 11 ~ 15 in comparison with 4.

Chemical shifts are in ppm downfield of TMS. ¹H NMR spectra were taken in CDCl₃ at 300 MHz, as determined from ¹H-¹H 2D homonuclear shift correlated experiments.

Carbon	4	11	12	13	14	Carbon	4	11	12	13	14
1	178.5	174.1	174.3	174.3	174.4	19	21.9	21.6	21.5	21.3	21.4
2	45.3	44.9	44.8	44.8	44.8	20	14.0	13.7	14.1	13.5	13.6
3	78.1	80.0	78.7	79.5	80.1	21	15.0	16.2	15.3	16.1	16.1
4	42.1	39.6	39.1	40.7	40.0	1'	103.1	103.4	103.3	102.5	103.2
5	83.4	85.9	85.7	83.1	84.1	2'	70.9	74.9	74.6	70.9	70.9
6	73.7	75.1	72.8	76.1	76.0	3'	65.3	60.5	60.3	64.8	65.5
6-OMe		53.0	_	52.8	52.9	3'-N(CH ₃) ₂	40.3		_	40.7	40.3
7	42.2	37.6	37.1	37.3	37.7	3'-NCH ₃		33.2	33.1	—	
8	29.9	26.1	25.8	26.3	26.1	4'	28.7	37.1	37.0	28.6	28.8
9	57.3	49.7	49.7	49.7	49.6	5'	68.8	68.9	68.7	68.5	68.9
9a,11 C=O	_	156.9	156.5	156.8	156.7	5'-CH3	21.3	21.1	21.1	21.3	21.5
10	56.7	57.9	58.3	57.6	57.6	1″	94.9	96.8	96.7	96.6	96.5
11	73.2	80.6	80.8	79.5	79.8	2"	34.8	35.2	35.1	35.2	35.1
12	73.8	76.1	75.0	75.0	75.0	3″	72.9	71.8	73.0	73.6	72.7
13	77.2	74.1	76.2	74.2	74.0	3"-CH ₃	21.6	21.1	20.9	21.3	21.4
14	21.1	21.3	20.5	21.3	21.4	3"-OCH ₃	49.4	49.4	49.3	49.7	49.4
15	11.2	10.5	10.5	10.6	10.5	4″	77.9	77.9	78.0	88.9	77.9
16	16.2	16.2	16.6	16.1	16.2	4"-OCH ₃	<u> </u>		_	62.1	—
17	9.4	9.8	9.6	9.6	9.5	5″	65.7	65.5	65.5	65.1	65.7
18	27.4	26.7	26.9	26.2	26.8	5"-CH ₃	18.3	18.5	18.5	18.2	18.6

Table 2. ¹³C NMR chemical shifts $(\delta_c)^*$ for compounds 11~14 in comparison with 4.

^a Chemical shifts are in ppm downfield of TMS. ¹³C NMR spectra were taken in CDCl₃ at 75 MHz, as determined from ¹H-¹³C 2D heteronuclear shift correlated experiments.

base-mediated intramolecular cyclization of a 9abenzyloxycarbonyl and C-11 hydroxyl groups. The fact that also a less polar non-methylated 9a,11-cyclic derivative 9 was isolated, confirmed the cyclization in this reaction step. The elimination of the protecting groups in 9 and N-methylation via (12), provided the expected 9a,11-cyclic carbamate (15).

The structure of the novel azalides $7 \sim 15$ has been well elucidated on the basis of their ¹H and ¹³C NMR spectra. Unambiguous NMR assignments of representative azalides $11 \sim 15$ were made by means of homonuclear ¹H-¹H and heteronuclear ¹H-¹³C 2D NMR spectroscopy (Tables 1 and 2). In the ¹H NMR spectra of 13 and 14 peaks due to the new 6-OCH₃ were observed at δ 3.45 and 3.46, respectively, together with the downfield shifts of 9a-H, 9b-H, 10-H, 11-H and 13-H, compared to 4. The ¹H NMR spectrum of 13 showed an additional

Table	3.	Ant	ibacte	rial	in	vitro	ac	tivity	of	13	and	14	in
com	ipari	son	with	azi	thr	omyc	in	(1)	and	6-	<i>O</i> -m	eth	yl-
azit	hron	nycir	n (2).										

		MIC (ug/m1)							
Organism -									
organioni	1	2	13	14					
Staphylococcus aureus ATCC 6538 P	1.56	0.39	25	6.25					
S. epidermidis ATCC 12228	0.2	0.2	12.5	1.56					
Micrococcus flavus ATCC 10240	0.39	0.79	12.5	6.25					
Streptococcus faecalis ATCC 8043	0.1	0.78	NT	0.39					
Escherichia coli ATCC 10536	0.78	3.125	100	12.5					
Salmonella panama 6117	3.12	6.25	>100	25					

Method: Determined by microdilution method using Mueller-Hinton broth and Dynatec microplate reader MR-5000.

Incubation: 18 hours at 37° C. Inoculum size: $10^{5} \sim 10^{6}$ cfu/ml. NT: Not tested.

methoxy signal at δ 3.54 and a doublet methine resonance due to 4"-H at δ 2.68. Beside the 6-OCH₃ peaks at δ 52.8 and 52.9, the ¹³C NMR spectra of **13** and **14** revealed the new 9a,11-carbamate carbonyl

signals at δ 156.8 and 156.7, respectively. The signal at δ 62.1 in the spectrum of **13** was attributed to 4"-OCH₃. This was supported with a significant downfield shift of C-4" (δ 77.9 \rightarrow 88.9). The ¹³C NMR spectrum of **15** showed resonance attributed to 9a,11-carbamate carbonyl at δ 156.4 and the expected downfield shifts of 10-H (δ 2.58 \rightarrow 3.66) and 11-H (δ 3.46 \rightarrow 4.32) in the corresponding ¹H NMR, compared to the parent amine **4**.

The *in vitro* antibacterial activities¹⁰⁾ of novel O-methyl derivatives 13 and 14, compared with those of azithromycin (1) and 6-O-methylazithromycin (2), are shown in Table 3. In general, 6-O-methyl-9a,11-cyclic carbamate 14 was less active than 1 or its 6-O-methyl-derivative 2. 6,4''-Di-O-methylated derivative 13 showed only slight activity. Nevertheless, these 9a,11-functionalized derivatives of 4 provide an entry into novel analogues of the important class of 15-membered azalide antibiotics.

Experimental

MP's were taken using a Fisher-Johns apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer 257 G spectrometer. Electron impact mass spectra were recorded on a Shimadzu GCMS-QP 1000 mass spectrometer at 20 eV and ion source temperature of 250°C. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on JEOL FX-100 or Varian GEM-300 spectrometers. TLC was performed on E. Merck plates of Silica gel 60 using solvent system A (CH₂Cl₂-CH₃OH-conc NH₄OH, 90:9:0.5) or B (EtOAc-(*n*-hexane)-Et₂NH, 100:100:20). Spots were visualized by spraying with 5% H₂SO₄-EtOH solution followed by heating at 110°C. Silica gel column chromatography was performed with Silica gel 60 (70~230 mesh, E. Merck).

 $\frac{2'-O,(3',9a)-\text{Di-}N-\text{tris(benzyloxycarbonyl)-}N-\text{demethyl-9-deoxo-9a-aza-9a-homoerythromycin A (5)}}{2'-O-9a-N-\text{bis(benzyloxycarbonyl)-}N-\text{demethyl-9-deoxo-9a-aza-9a-homoerythromycin A (6)}}$

To a stirred soln of 9-deoxo-9a-aza-9a-homoerythromycin A 4 (10 g) and NaHCO₃ (20 g) in benzene (50 ml), benzyl chloroformate (25 ml) was added successively at reflux temperature for 2 hours. The reaction mixture was stirred for a further 3 hours and then left to stand overnight at room temperature. The suspension was extracted with 0.25 N HCl (50 ml), the organic layer was dried and evaporated. The residue was dissolved in CHCl₃ (100 ml), washed with satd NaCl soln (50 ml) and evaporated *in vacuo*. Precipitation of the crude product from Et₂O - petroleum ether (10 ml : 100 ml) gave 10.93 g (70.1%) of **5**. Crystallization from CH₂Cl₂ - petroleum ether afforded colourless crystals: MP 144~148°C; TLC, system A Rf 0.724; IR (CHCl₃) cm⁻¹ 3400, 2980, 1750, 1690, 1265; ¹H NMR (300 MHz, CDCl₃) δ 2.76, 2.82 (3H, 3'-NCH₃), 3.37 (3H, 3''-OCH₃), 3.48 (1H, 2'-H), 7.28 (15H, Ph); ¹³C NMR (75 MHz, CDCl₃) δ 176.78 (C-1), 157.4 (9a-carbamate C=O), 165.5, 156.1 (3'-carbamate C=O), 154.5 (2'-carbonate C=O), 100.1 (C-1'), 95.8 (C-1''), 55.0 (C-10), 49.5 (3''-OCH₃), 35.7 (C-2''), 34.9 (3'-NCH₃), 28.7 (C-8); EI-MS *m/z* 988 (M⁺ - CO₂CH₂Ph).

Evaporation of the Et₂O-petroleum ether mother liquor and silica gel column chromatography (CH₂Cl₂ - CH₃OH - conc NH₄OH, 90:9:5) of the residue afforded **6** (1.23 g, 9.0%) as less polar white solid with Rf 0.626 (TLC, system A); IR (CHCl₃) cm⁻¹ ~ 3400, 2980, 1750, 1690, 1460, 1425, 1385, 1260, 1170; ¹H NMR (300 MHz, CDCl₃) δ 2.23 (6H, 3'-N(CH₃)₂), δ 3.32 (1H, 2'-H), 3.30 (3H, 3"-OCH₃), 7.31 (10H, Ph); ¹³C NMR (75 MHz, CDCl₃) δ 177.3 (C-1), 157.8 (9a-carbamate C=O), 154.9 (2'-carbonate C=O), 100.9 (C-1')₂96.3 (C-1"), 49.5 (3"-OCH₃), 40.8 (3'-N(CH₃)₂), δ 3.5.0 (C-2"); EI-MS *m/z* 1,002 (M⁺).

2'-O.9a-N-Bis(benzyloxycarbonyl)-N-demethyl-9-deoxo-9a-aza-9a-homoerythromycin A (6)

To a stirred soln of 4 (10 g) and NaHCO₃ (20 g) in benzene (50 ml), benzyl chlorformate (25 ml) was added, the reaction mixture was stirred vigorously at reflux temperature for 5 hours, and then was left to stand overnight at room temperature. The mixture was extracted with 0.25 N HCl (50 ml), the organic layer was separated and again diluted with 50 ml of 0.25 N HCl, affording rapid crystallization of white colourless needles. The crystals were filtered off, washed with water (75 ml) and dried to yield 4.95 g (36.3%)

of TLC pure 6 with physico-chemical properties as described in the above example.

Reaction of $2'-O_{,(3',9a)}$ -Di-N-tris(benzyloxycarbonyl)-N-demethyl-9-deoxo-9a-aza-9a-homoerythromycin A (5) with Methyl Iodide

To a stirred soln of **5** (6.0 g) in DMSO - THF (1:1, 60 ml) at $0 \sim 5^{\circ}$ C were added succesively methyl iodide (2.3 ml) and 55 ~ 60% NaH dispersion (1.6 g) for 2 hours. The reaction was stirred for 1 hour, the suspension was poured into satd aq NaHCO₃ soln (25 ml), and extracted with EtOAc (75 ml). The organic phase was washed with satd NaCl soln (25 ml), dried over K₂CO₃ and concd to oily residue. The resulting product was dissolved in CHCl₃ (30 ml), washed several times with satd NaHCO₃ soln, dried (K₂CO₃) and evaporated to give 4.06 g of a colorless foam. Chromatography of 1.0 g of the crude product (100 g silica gel, $70 \sim 230$ mesh) using CH₂Cl₂ - CH₃OH - conc NH₄OH, 90:9:0.5 as solvent system, gave in order of eluation, 2'-O,3'-N-bis(benzyloxycarbonyl)-N-demethyl-6,4"-di-O-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **7** (158 mg), 2'-O,3'-N-bis(benzyloxycarbonyl)-N-demethyl-6-O-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **8** (445 mg) and 2'-O,3'-N-bis(benzyloxycarbonyl)-N-demethyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **9** (105 mg).

For compound 7: TLC, system A, Rf 0.793; IR (KBr) cm⁻¹ 3480, 2985, 1465, 1425, 1390, 1260, 1165, 1080, 1010; ¹H NMR (300 MHz, CDCl₃) δ 2.82, 2.85 (3H, 3'-NCH₃), 3.31 (3H, 3"-OCH₃), 3.45 (3H, 6-OCH₃), 3.53 (3H, 4"-OCH₃), 4.43 (1H, 1'-H), 4.90 (1H, 1"-H).

For compound **8**: TLC, system A, Rf 0.648; IR (CHCl₃) cm⁻¹ 3480, 2970, 1750, 1710, 1460, 1420, 1385, 1260, 1170, 1120, 1055, 1000; ¹H NMR (300 MHz, CDCl₃) δ 2.82, 2.85 (3H, 3'-NCH₃), 3.35 (3H, 3"-OCH₃), 3.44 (3H, 6-OCH₃), 3.49 (1H, 2'-H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1 (C-1), 156.3 (3'-carbamate C=O), 155.9 (9a-carbamate C=O), 154.5 (2'-carbonate C=O), 99.7 (C-1'), 95.8 (C-1''), 57.4 (C-10), 54.3 (6-OCH₃), 52.7 (C-9), 49.5 (3"-OCH₃); EI-MS m/z 1,002 (M⁺).

For compound **9**: TLC, system A, Rf 0.490; IR (KBr) cm⁻¹ 3485, 2980, 1750, 1705, 1460, 1425, 1380, 1260, 1165, 1130, 1060, 995; ¹H NMR (300 MHz, CDCl₃) δ 2.81, 2.84 (3H, 3'-NCH₃), 3.35 (3H, 3''-OCH₃).

<u>3'-N-Demethyl-6,4"-di-O-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythomycin A 9a,11-Cyclic Carbamate (10), 3'-N-Demethyl-6-O-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (11) and 3'-N-Demethyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (12)</u>

To a soln of crude product from the above example (4.79 g) in EtOH (50 ml) and water (20 ml) containing 0.6 ml AcOH and 0.97 g AcONa was added Pd-C 10% (2.0 g) and the mixture was stirred for 5 hours at room temperature under hydrogen atmosphere (5 atm). The catalyst was filtered off, and the filtrate evaporated under reduced presure. The residue was diluted with water (50 ml) and extracted with CHCl₃ at pH 9.0. The combined organic extractes were dried (K_2CO_3) and concd *in vacuo* to give 3.2 g of crube product, which was if necessary purified by silica gel column chromatography $(CH_2Cl_2 - CH_3OH - \text{conc NH}_4OH, 90:9:0.5)$, to give in order of eluation, 3'-N-demethyl-6,4"-di-O-methyl-derivative 10, 3'-N-demethyl-6-O-methylderivative 11 and 3'-N-demethyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a;11-cyclic carbamate 12.

For compound **10**: MP 139~143 °C; TLC, system A, Rf 0.310; IR (CHCl₃) cm⁻¹ 3480, 2985, 1750, 1465, 1420, 1390, 1165, 1085, 1015, 920; ¹H NMR (300 MHz, CDCl₃) δ 2.54 (3H, 3'-NCH₃), 3.33 (3H, 3"-OCH₃), 3.46 (3H, 6-OCH₃), 3.53 (3H, 4"-OCH₃), 3.65 (1H, 5'-H), 4.15 (1H, 5"-H), 4.49 (1H, 1'-H), 4.88 (1H, 1"-H), 5.46 (1H, 13-H); EI-MS *m/z* 773 (M⁺).

For compound 11: MP 142~146°C; TLC, system A, Rf 0.269; IR (CHCl₃) cm⁻¹ 3480, 2980, 1745, 1460, 1420, 1385, 1250, 1165, 1170, 1000; ¹H NMR (300 MHz, CDCl₃): Table 1; ¹³C NMR (75 MHz, CDCl₃): Table 2; EI-MS m/z 759 (M⁺).

 For compound 12: MP 155~158°C; TLC, system A, Rf 0.172; IR (CHCl₃) cm⁻¹ 3480, 2980, 1750, 1455, 1420, 1385, 1170, 1080, 1005; ¹H NMR (300 MHz, CDCl₃): Table 1; ¹³C NMR (75 MHz, CDCl₃): Table 2; EI-MS m/z 745 (M⁺).

Anal Calcd for C₃₇H₆₆N₂O₁₃: C 59.50, H 8.91, N 3.75. Found: C 59.24, H 8.56, N 3.63.

6,4"-Di-O-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (13), 6-O-Methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (14) and 9-Deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (15)

To a soln of crude product (2.2 g) of the above example in CHCl₃ (50 ml) were added 37% aq HCOH (0.57 ml) and 98% HCOOH (0.52 ml) and the soln was stirred for 8 hours at reflux temperature. The reaction mixture was poured into water (40 ml), extracted with CHCl₃ at pH 9, the combined organic extracts dried (K₂CO₃) and evaporated *in vacuo* to give 2.17g of a crude product which was purified by silica gel column chromatography (CH₂Cl₂-CH₃OH-conc NH₄OH, 90:9:0.5) to give, in order of eluation, 6,4"-di-*O*-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **13** (210 mg), 6-*O*-methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **14** (876 mg) and 9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-cyclic carbamate **15** (160 mg).

For compound 13: MP 127~131°C; TLC, system B, Rf 0.645; IR (CHCl₃) cm⁻¹ 3480, 2980, 1755, 1465, 1420, 1390, 1170, 1100, 1060; ¹H NMR (300 MHz, CDCl₃): Table 1; ¹³C NMR (75 MHz, CDCl₃): Table 2; EI-MS m/z 787 (M⁺).

For compound 14: MP 135~138°C; TLC, system B, Rf 0.546; IR (CHCl₃) cm⁻¹ 3480, 2980, 1755, 1465, 1420, 1390, 1170, 1100, 1060; ¹H NMR (300 MHz, CDCl₃): Table 1; ¹³C NMR (75 MHz, CDCl₃): Table 2; EI-MS m/z 773 (M⁺).

For compound **15**: MP 133~136°C; TLC, system B, Rf 0.454; IR (CHCl₃) cm⁻¹ 3475, 2980, 1750, 1460, 1420, 1385, 1260, 1220, 1100, 1050; ¹H NMR (300 MHz, CDCl₃): Table 1: ¹³C NMR (75 MHz, CDCl₃): δ 174.2 (C-1), 156.4 (9a, 11 C=O),103.4 (C-1'), 96.6 (C-1''), 49.5 (3"-OCH₃), 40.3 (3'-N(CH₃)₂); EI-MS *m/z* 759 (M⁺).

6-O-Methyl-9-deoxo-9a-aza-11-deoxy-9a-homoerythromycin A 9a,11-Cyclic Carbamate (13)

To a soln of 11 (0.41 g) in CHCl₃ (20 ml) were added 37% aq HCOH (0.09 ml) and 98% HCOOH (0.08 ml), and the reaction mixture was stirred for 8 hours at reflux temperature. After the complete absence of 11 (TLC, system B), the soln was poured into water (40 ml), and extracted with CHCl₃. The combined organic extracts were dried (K_2CO_3) and evaporated *in vacuo* to give 0.39 g (92.8%) of 13 with physico-chemical properties as described in the above example.

Acknowledgments

This study was supported in part by a grant from Ministry of Science, Technology and Informatics of Republic Croatia (1-07-035).

References

- DOKIĆ, S.; G. KOBREHEL, N. LOPOTAR, B. KAMENAR, A. NAGL & D. MRVOŠ: Erythromycin series. Part 13. Synthesis and structure elucidation of 10-dihydro-10-deoxo-11-methyl-11-azaerythromycin A. J. Chem. Research (S) 1988: 152~153, 1988, J. Chem. Research (M) 1988: 1239~1261, 1988
- 2) BRIGHT, G. M.; A. A. NAGEL, J. BORDNER, K. A. DESAI, J. N. DIBRINO, J. NOWAKOWSKA, L. VINCENT, R. M.

WATROUS, F. C. SCIAVOLINO, A. R. ENGLISH, J. A. RETSEMA, M. R. ANDERSON, L. A. BRENNAN, R. J. BOROVOY, C. R. CIMOCHOWSKI, J. A. FAIELLA, A. E. GIRARD, D. GIRARD, C. HERBERT, M. MANOUSOS & R. MASON: Synthesis, *in vitro* and *in vivo* activity of novel 9-deoxo-9a-aza-9a-homoerythromycin A derivatives; A new class of macrolide antibiotics, the azalides. J. Antibiotics 41: 1029~1047, 1988

- KOBREHEL, G.; G. LAZAREVSKI, S. ĐOKIĆ, L. KOLAČNY-BABIĆ, N. KUČIŠEC-TEPEŠ & M. CVRLJE: Synthesis and antibacterial activity of O-methylazithromycin derivatives. J. Antibiotics 45: 527~534, 1992
- 4) ĐOKIĆ, S.; G. KOBREHEL, G. LAZAREVSKI, N. LOPOTAR, Z. TAMBURAŠEV, B. KAMENAR, A. NAGL & I. VICKOVIĆ: Erythromycin series. Part 11. Ring expansion of erythromycin A oxime by the Beckmann rearrangement. J. Chem. Soc. Perkin Trans I 1986: 1881 ~ 1890, 1986
- 5) ĐOKIĆ, S.; G. KOBREHEL & G. LAZAREVSKI: Erythromycin series. XII. Antibacterial *in vitro* evaluation of 10-dihydro-10-deoxo-11-azaerythromycin A: Synthesis and structure-activity relationship of its acyl derivatives. J. Antibiotics 40: 1006~1015, 1987
- FLYNN, E. H.; H. W. MURPHY & R. E. MCMAHON: Erythromycin. II. Des-N-methylerythromycin and N-methyl-C¹⁴-erythromycin. J. Am. Chem. Soc. 77: 3104~3106, 1955
- 7) BRIGHT, G. M. (Pfizer): Epimeric azahomoerythromycin A derivatives, intermediates and method of use. U.S. 4,526, 889, July 2, 1985
- MORIMOTO, S.; Y. TAKAHASHI, Y. WATANABE & S. ÖMURA: Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J. Antibiotics 37: 187~189, 1984
- MORIMOTO, S.; Y. MISAWA, T. ADACHI, T. NAGATE, Y. WATANABE & S. OMURA: Chemical modification of erythromycins. II. Synthesis and antibacterial activity of O-alkyl derivatives of erythromycin A. J. Antibiotics 43: 286~294, 1990
- 10) CONRATH, T. B. & COUPE, N. B. (Ed.): Dynatech Corporation: Mannuel Microtiter Procedures. Chaperter 2. Bacteriology. pp. 28~32, The Whitefriars Press Ltd., London & Tonbridge, 1978